Flink 系列:Connect

这篇文章简要介绍 Flink 多流 Connect 操作。

概述

要实现多流 low-level joing 操作,应用可以使用 CoProcessFunctionKeyedCoProcessFunction. 这些类使用 processElement1(...),processElement2(...) 方法来处理不同的输入流,每股流的事件都会传给相应的方法来处理。

可以使用以下的模式来实现 log-level join 操作:

  • 为每一个输入(每个流)创建一个 state 对象;
  • 收到事件之后更新对应的流状态;
  • 两股流中的事件都收到后,聚合状态变量并输出结果;
  • 可以为等待另一股流事件设置一个超时时间,如果在指定时间内未收到事件,则执行超时逻辑。

Watermark 推进

在多流操作中,Watermark 推进如下图所示: watermark

一个算子有多个上游算子(或多个输入多股流),其 Watermark 从多个上游算子输入的 Watermark中选择最小值,如果其中一股流或一个算子没有输入,则会阻塞算子的执行。

代码实例

在下面的例子中,采集出租车乘坐事件(TaxiRide) 和费用事件(TaxiFare), 根据 rideId 执行 join 操作。如果其中一个事件等待另一个事件超时 60S, 则执行超时逻辑,将事件输出到侧输出流中,供后续业务处理。

实例的主要逻辑如下:

  • TaxiRide 代表了乘坐事件,包括乘坐 id (riderId), 事件类型及事件时间三个字段;
  • TaxiFare 代表了乘坐费用,包括乘坐 id (riderId), 费用及事件时间三个字段;
  • RideFare 代表了结果对象,包含了 TaxiRideTaxiFare 两个对象;
  • TaxiRideTaxiFare 通过 乘坐 id (riderId) 进行关联;
  • 为每一个乘坐事件设置一个状态变量,存储 TaxiRide 对象;
  • 为每一个费用事件设置一个状态变量,存储 RideFare 对象;
  • 收到其中一个事件之后,设置一个超时时间,等待另外一个事件,如果在超时时间范围内收到另外一个事件,则聚合内容输出到主流,如果超时未收到事件,则将事件输出到侧输出流中。

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
public class JoinDataStreamJob {

public static void main(String[] args) throws Exception {
// Sets up the execution environment, which is the main entry point
// to building Flink applications.
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

// 设置 Watermark 生成间隔为 200MS
env.getConfig().setAutoWatermarkInterval(200L);

// 设置并行度为 1
env.setParallelism(1);

// 用parameter tool工具从程序启动参数中提取配置项,如 --host 192.168.1.1 --port 9000
// 使用 nc -lk 9000 监听请求并发送数据
final ParameterTool parameterTool = ParameterTool.fromArgs(args);
String host1 = parameterTool.get("host1");
int port1 = parameterTool.getInt("port1");

// 获取 socket 文本流
final DataStreamSource<String> rideSource = env.socketTextStream(host1, port1);

// 转换数据格式
final SingleOutputStreamOperator<TaxiRide> rideDataStream = rideSource.map(line -> {
String[] fields = line.split(",");

return new TaxiRide(fields[0], fields[1], Long.parseLong(fields[2]));
});

// 定义 watermarkStrategy
final WatermarkStrategy<TaxiRide> riderWatermarkStrategy = WatermarkStrategy
.<TaxiRide>forBoundedOutOfOrderness(Duration.ofSeconds(0))
.withTimestampAssigner((event, timestamp) -> event.getTimestamp() * 1000)
.withIdleness(Duration.ofSeconds(1));

final SingleOutputStreamOperator<TaxiRide> rideEventDataStream = rideDataStream.assignTimestampsAndWatermarks(riderWatermarkStrategy);


String host2 = parameterTool.get("host2");
int port2 = parameterTool.getInt("port2");

// 获取 socket 文本流
final DataStreamSource<String> fareSource = env.socketTextStream(host2, port2);

// 转换数据格式
final SingleOutputStreamOperator<TaxiFare> fareDataStream = fareSource.map(line -> {
String[] fields = line.split(",");

return new TaxiFare(fields[0], Double.parseDouble(fields[1]), Long.parseLong(fields[2]));
});

// 定义 watermarkStrategy
final WatermarkStrategy<TaxiFare> fareWatermarkStrategy = WatermarkStrategy
.<TaxiFare>forBoundedOutOfOrderness(Duration.ofSeconds(0))
.withTimestampAssigner((event, timestamp) -> event.getTimestamp() * 1000)
.withIdleness(Duration.ofSeconds(1));

final SingleOutputStreamOperator<TaxiFare> fareEventDataStream = fareDataStream.assignTimestampsAndWatermarks(fareWatermarkStrategy);

final KeyedStream<TaxiRide, String> taxiRideStringKeyedStream = rideEventDataStream.keyBy(taxiRide -> taxiRide.getRideId());
final KeyedStream<TaxiFare, String> taxiFareStringKeyedStream = fareEventDataStream.keyBy(taxiFare -> taxiFare.getRideId());

final SingleOutputStreamOperator<RideFare> rideFareStream = taxiRideStringKeyedStream.connect(taxiFareStringKeyedStream)
.process(new RiderFareProcessMapFuntion());
rideFareStream.print("ride-fare");

OutputTag<RideFare> outputTag = new OutputTag<RideFare>("ride-fare") {
};
final DataStream<RideFare> sideOutputStream = rideFareStream.getSideOutput(outputTag);
sideOutputStream.print("side-output");


// Execute program, beginning computation.
env.execute("Flink Join Training Job");
}

private static class RiderFareProcessMapFuntion extends KeyedCoProcessFunction<String, TaxiRide, TaxiFare, RideFare> {

// 超时时间为 60 S
private static final int TIMET_OUT_MS = 60 * 1000;

// 存放 TaxiRide 状态
private ValueState<TaxiRide> rideState;

// 存放 TaxiFare 状态
private ValueState<TaxiFare> fareState;

// 存放超时时间戳
private ValueState<Long> timeoutState;

@Override
public void open(Configuration parameters) throws Exception {
rideState = getRuntimeContext().getState(new ValueStateDescriptor<TaxiRide>("ride", TaxiRide.class));
fareState = getRuntimeContext().getState(new ValueStateDescriptor<TaxiFare>("fare", TaxiFare.class));
timeoutState = getRuntimeContext().getState(new ValueStateDescriptor<Long>("timeout", Long.class));
}

@Override
public void processElement1(TaxiRide value, Context ctx, Collector<RideFare> out) throws Exception {
TaxiFare fare = fareState.value();
if (fare != null) {
fareState.clear();
out.collect(new RideFare(value, fare));

Long timeout = timeoutState.value();

ctx.timerService().deleteEventTimeTimer(timeout);
System.out.println("del Timer:" + timeout);

timeoutState.clear();

} else {
rideState.update(value);

Long timeout = ctx.timestamp() + TIMET_OUT_MS;
timeoutState.update(timeout);

ctx.timerService().registerEventTimeTimer(timeout);
System.out.println("reg Timer:" + timeout);
}

}

@Override
public void processElement2(TaxiFare value, Context ctx, Collector<RideFare> out) throws Exception {
TaxiRide ride = rideState.value();
if (ride != null) {
rideState.clear();
out.collect(new RideFare(ride, value));

Long timeout = timeoutState.value();

ctx.timerService().deleteEventTimeTimer(timeout);
System.out.println("del Timer:" + timeout);

timeoutState.clear();

} else {
fareState.update(value);

Long timeout = ctx.timestamp() + TIMET_OUT_MS;
timeoutState.update(timeout);

ctx.timerService().registerEventTimeTimer(timeout);
System.out.println("reg Timer:" + timeout);
}
}

@Override
public void onTimer(long timestamp, OnTimerContext ctx, Collector<RideFare> out) throws Exception {

System.out.println("onTimer");

TaxiRide ride = rideState.value();
TaxiFare fare = fareState.value();

RideFare rideFare = new RideFare();
rideFare.setFare(fare);
rideFare.setRide(ride);

OutputTag<RideFare> outputTag = new OutputTag<RideFare>("ride-fare") {
};
ctx.output(outputTag, rideFare);

rideState.clear();
fareState.clear();
timeoutState.clear();
}
}
}

工程代码:https://github.com/noahsarkzhang-ts/flink-lab/tree/main/flink-join-training)